If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-62=0
a = 2; b = 3; c = -62;
Δ = b2-4ac
Δ = 32-4·2·(-62)
Δ = 505
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{505}}{2*2}=\frac{-3-\sqrt{505}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{505}}{2*2}=\frac{-3+\sqrt{505}}{4} $
| 3x2-4x-0=0 | | (x^2+x)^2+(x^2+x)-6=0 | | x2=6x+22 | | 4²^x-4^x+2-80=0 | | 4-7x=3x-2 | | Q+2x=3x-2 | | (8x)²+(7x)²=15 | | M2+5m+1=0 | | –7x+5=–3x+23 | | F(x)=2x²x²+2x-3 | | 2(3x-5)-4=3(x-2)+5 | | (x+19)^2=100 | | F(x)=x+3x2-2x-3 | | (x+19)2=100 | | Xx6=11 | | (5x+19)^2=64 | | 6x+7×-4=4x+4×-4 | | 4c^2-28c+6=0 | | u2=81 | | x2=13+6x | | (2a+4)×(a+4)=160 | | (2x+4)×(x+4)=160 | | (6v+2)*(9v+8)=0 | | 3m+10/5m+10=5/7 | | (D^2+2D-1)y=0 | | -15/8+x=-23/10 | | 120x3=x | | ((x-5)/5)=-4 | | ((x-4)/3)=21 | | ((5+x)/2)=12 | | (4-x/3)=6 | | (9c/5)=-27 |